2501/103 2508/103 2502/103 2509/103

2503/103

ENGINEERING MATHEMATICS I

June/July 2016 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN MECHANICAL ENGINEERING (PRODUCTION OPTION) (INDUSTRIAL PLANT OPTION) DIPLOMA IN AUTOMOTIVE ENGINEERING DIPLOMA IN WELDING AND FABRICATION DIPLOMA IN CONSTRUCTION PLANT ENGINEERING

MODULE I

ENGINEERING MATHEMATICS I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have Mathematical tables/Non programmable electronic calculator for this examination, Answer any FIVE of the EIGHT questions in the answer booklet provided. All questions carry equal marks. Maximum marks for each part of a question are as indicated. Candidates should answer the questions in English.

This paper consists of 3 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2016 The Kenya National Examinations Council

Turn over

- Give that $Z_1 = 5 + 6j$, $Z_2 = 8 9j$. Find: 1. (a)
 - (i) Z1Z2;
 - $\frac{Z_1}{Z_2}$ (ii)

(8 marks)

- Expand $\cos 5\theta$ and $\sin 5\theta$ by Demoivres theorem. \triangleright
 - Use the expansion in (b) (i) above to expand $\tan 5\theta$ in terms of $\tan \theta$.

(12 marks)

(10 marks)

Solve the simultaneous equations:

$$x^{2} + xy + y^{2} = 3$$
$$x^{2} + 2xy + 2y^{2} = 5$$

(10 marks)

Use the expansion in $\log_3^{(br+4)} - \log_3^{(6r+7)} = 2$ (ii) $3^{2x} - 3^{x+1} + 2 = 0$ (b) Solve the simple $x^2 + 3 = 0$ Show that $\cosh^{-1}x = \pm \ln[x + \sqrt{x^2 - 1}]$. (a)

(10 marks)

Solve the equation $2.97 - 3.16 \sinh x - 4 \cosh x = 0$ correct to 5 decimal places. (b)

(10 marks)

4. (a) Solve the equations:

- $8x^2 + 88x + 144 = 0$ using factorisation;
- $5x^2 + 6x + 1 = 0$ by the formula method. (ii)

(6 marks) D

Find the sum of the first ten terms of the series 2 + 4 + 6 + ...(b)

The following equations were obtained in a research project: (c)

$$\frac{1}{x} + \frac{2}{y} + \frac{2}{z} = 4;$$

$$\frac{3}{x} - \frac{1}{y} + \frac{4}{z} = 25;$$

$$\frac{3}{x} + \frac{2}{y} - \frac{1}{z} = -4;$$

Use the elimination method to find the value of x, y and z,

(10 marks

2501/103 June/July 2016 2503/103 2509/103 2508/103

2

5. (a) (i) Use the binomial expansion to obtain the first three terms of

$$\sqrt{\frac{1+x}{1-x}}.$$

- (ii) By substituting $x = \frac{1}{9}$ in the expansion obtained in (a) (i) above to prove that $\sqrt{5} \simeq \frac{181}{81}$. (10 marks)
- (b) The radius of a right circular cylinder increases by 2% while the height decreases by 3%. Use the first two terms of a binomial expansion to determine the percentage change in volume. (10 marks)
- 6. (a) If $\sin \theta = 0.6$, determine other five trigonometric ratios of θ . (6 marks)
 - (b) Solve the equation:

$$4\cos\theta + 5\sin\theta = 6$$
, $0^{\circ} \le 0 \le 360^{\circ}$

(14 marks)

7. (a) Express the Cartesian equation $x^2 + 3y^2 = 3$ into the Polar form $r^2 = \frac{a}{b + k \cos 2\theta}$; where a, b and k are constants.

(7 marks)

- (b) The Parametric equations of the rectangular hyperbola $xy = c^2$ are x = ct, $y = \frac{c}{t}$. Find the equation of the:
 - (i) chord joining the two points whose parameters are t₁ and t₂;
 - (13 marks)

- (ii) tangent to the curve at the point t.
- 8. (a) Two forces of magnitudes 5 N and 10 N act at angles of 30° and 60° to a direction OX.

 Use complex numbers to find the magnitude and direction of the resultant force.

 (7 marks)
 - (b) (i) The formula T₂ = T₁e^{iθ} is used in connection with belt drives, where T₁ and T₂ are tensions, μ the coefficient of friction and θ the angle of lap in radius. Determine the angle of lap in degrees when T₁ = 8N, T₂ = 14N and μ = 0.4.
 - (ii) Solve the following simultaneous equations:

$$4 \log_2 a + 3 \log_3 b = 32;$$

 $3 \log_2 a - 2 \log_3 b = 7.$

(13 marks)

THIS IS THE LAST PRINTED PAGE.

(2)