2521/105, 2602/106 2601/106, 2603/106 ELECTRICAL MEASUREMENTS AND ANALOGUE ELECTRONICS I June/July 2017 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION) MODULE I

ELECTRICAL MEASUREMENTS AND ANALOGUE ELECTRONICS I

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet

Mathematical table/Non-programmable scientific calculator;

Drawing instruments.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer any THREE questions from section A and any TWO questions from

section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer all questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: ELECTRICAL MEASUREMENTS

Answer any THREE questions from this section.

- (a) (i) Describe the following standards with respect to measurements:
 - (I) secondary;
 - (II) working.
 - (ii) A standard cell has a voltage rating of 1.018500 V and internal resistance of 500Ω . If the insulation resistance between its terminals is 5 M Ω , determine the:
 - (I) current drain due to insulation resistance;
 - difference between the rated voltage and the drop due to internal resistance.

(9 marks)

- (b) Derive the dimensional equation of "work done" in MLT system of units. (5 marks)
- (c) A voltmeter having a sensitivity of 1,000 Ω/V reads 100V on its 150V scale when connected across an unknown resistor in series with a milliammeter. Neglecting the milliammeter resistance, determine the percentage error due to the loading effect of the voltmeter when the milliammeter reads 5 mA.
 (6 marks)
- 2. (a) (i) State one source of error in wattmeters when used in measurements.
 - (ii) With the aid of a labelled block diagram, describe the heterodyne method of frequency measurement.

(7 marks)

(b) A solenoid, 1.2 m long, is uniformly wound with 800 turns. A search coil of mean diameter 30 mm, wound with 50 turns, is placed at the centre of the solenoid and connected to a ballistic galvanometer. The total resistance of the search-coil circuit is 2000Ω. When a current of 5A through the solenoid is reversed, the deflection on the galvanometer scale is 85 divisions.

Taking $\mu_0 = 4\pi \times 10^{-7}$ H/m, determine the ballistic constant of the galvanometer in coulombs/unit deflection.

(13 marks)

- (a) (i) Define reliability with respect to engineering systems.
 - (ii) Sketch, on the same axis, the curves showing the manufacturing cost against reliability and explain the shape of each curve.

(8 marks)

- (b) Outline the procedure of assessing the reliability of an equipment. (8 marks)
- (c) In a test of 400 diodes, 5 failed over a 1,000 hour period. For the diodes, determine the:
 - (i) failure rate;
 - (ii) mean time to fail.

(4 marks)

- (a) (i) State any two possible causes of open circuit fault in carbon composition resistors.
 - (ii) Figure 1 shows a schematic block diagram of a d.c motor speed control system. Explain the effect of an open circuit fault in the feedback line and how it can be verified.

(7 marks)

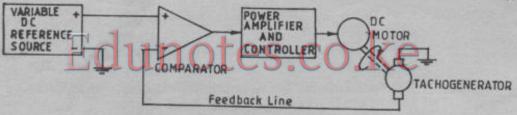


Fig. 1

(b) With the aid of a labelled block diagram incorporating a signal generator and an oscilloscope, describe a test to determine the gain of a faulty audio amplifier.

(7 marks)

- (c) In an electrical system, the probability (P_t) of the system being returned to working condition within a time of 4 hours is 86.5%.

 Determine the:
 - (i) mean time to repair;
 - (ii) failure rate.

(6 marks)

- (a) (i) Distinguish between instrumental errors and environmental errors with respect to measurements.
 - (ii) With the aid of a circuit diagram, describe how a full-wave rectifier instrument is used to measure the r.m.s value of an a.c voltage.

(9 marks)

- (b) (i) With the aid of a phasor diagram, show that the power measured by the two-wattmeter method in a 3-phase system gives the total power in the system. Assume the wattmeters are connected in the red and blue phases.
 - (ii) In the measurement in b(i), the readings on each wattmeter is 5.2 kW and -1.7 kW. Determine the:
 - (I) total power;
 - (II) power factor.

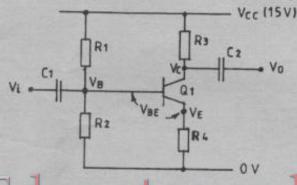
(11 marks)

SECTION B: ANALOGUE ELECTRONICS I

Answer any TWO questions from this section.

- 6. (a) (i) State any two merits of a full-wave centre-tapped single-phase rectifier.
 - (ii) With the aid of a circuit diagram, describe the operation of a shunt capacitor filter. Sketch the output voltage waveform.

(10 marks)


- (b) Show that the r.m.s. value, V_{r(rms)}, of the a.c. component of the rectified voltage from a full-wave diode rectifier equals 0.308 V_{peak}. (6 marks)
- (c) A series dc-to-ac inverter has an inductor of 10 mH, a capacitor of 47 μ Fand a load resistor of 5 Ω . Determine the:
 - (i) resonant frequency;
 - (ii) time period of oscillations

(4 marks)

- 7. (a) (i) Define the following JFET parameters:
 - (I) drain-source saturation current;
 - (II) gate-source cutoff (pinch-off) voltage.
 - (ii) With the aid of a labelled construction diagram, describe the operation of an n-channel depletion MOSFET and sketch its output characteristic curves.

(9 marks)

(b) Figure 2 shows a circuit diagram of a transistor amplifier. For stability reasons, the current through R_2 must be ten times the base current. Taking $\beta = 100$, $V_{BE} = 0.7V$, $V_C = 8V$, $V_E = 2V$ and $I_C = 1$ mA, determine the value of the bias resistors R_1 , R_2 , R_3 and R_4 . (11 marks)

Edunotes.co.ke

- (a) (i) State any two of Bohr's postulates with respect to the energy levels of an electron.
 - (ii) With the aid of a covalent bond diagram of an intrinsic semiconductor, explain how a hole takes part in conduction.

(8 marks)

- (b) Sketch the characteristic curve of a p-n junction diode and explain its shape. (6 marks)
- (c) An electrostatic CRO has deflection plates of length, l = 2 cm and distance between them, d = 3 mm. It is operated at an anode voltage, V_a = 2 kV and deflection potential, V_d = 150 V. Taking electron charge, e = 1.602 x 10⁻¹⁹C and electron mass, m = 9.109 x 10⁻³¹ kg, determine the:
 - (i) velocity of the electron beam;
 - (ii) transit time through the plates;
 - (iii) electric field intensity between the plates.

(6 marks)

THIS IS THE LAST PRINTED PAGE.