2501/103 2508/103 2502/103 2509/103 2503/103 ENGINEERING MATHEMATICS I June/July 2018 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN MECHANICAL ENGINEERING (PRODUCTION OPTION) (PLANT OPTION) DIPLOMA IN AUTOMOTIVE ENGINEERING DIPLOMA IN WELDING AND FABRICATION DIPLOMA IN CONSTRUCTION PLANT ENGINEERING

MODULE I

ENGINEERING MATHEMATICS 1

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Mathematical tables/ Non-programmable scientific calculator;

This paper consists of EIGHT questions.

Answer any FIVE questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2018 The Kenya National Examinations Council

Turn over

1. Simplify the expressions:

(i)
$$\frac{(1+x)^{\frac{1}{2}}-(1+x)^{\frac{1}{2}}}{(1+x)^{\frac{3}{2}}}$$

(ii)
$$\frac{\log 625 - \frac{1}{2} \log 25}{\log 125 + \frac{1}{2} \log 25}$$

(7 marks)

- Solve the equations: $2^{2a+1} = 8^{\frac{4a}{3}}$ (b)

 - (ii) $\log_x 4 + 2\log_2 x^2 = 6$

(13 marks)

- Find the ratio of the term in x^5 to the term in x^3 in the binomial expansion of 2. (a) $(2x+5)^{10}$, and determine its value when $x=\frac{1}{3}$, correct to four decimal places. (8 marks)
 - Determine the first four terms in the binomial expansion of $(1+2x)^{\frac{1}{2}}$, and state the (b) values of x for which the expansion is valid. (4 marks)
 - Use the binomial theorem to show that, if x is very small, then (c) (i)

$$\sqrt{\left(\frac{1-\frac{1}{2}x}{1+\frac{1}{2}x}\right)} = 1 - \frac{1}{2}x + \frac{1}{8}x^2 - \frac{1}{16}x^2.$$

By setting $x = \frac{1}{2}$ in the result in (i), determine the appropriate value of $\sqrt{0.6}$, (ii) correct to four decimal places.

- 3. Solve the equations: (a)

184 2 - 14 12 = 0"

3x+9+2x-4 = 2x2+0x+2 5x-13 = 2x2+0x+12 - 11/52 450 2-1-16-2-405-0 (12 marks)

2501/103, 2503/103, 2509/103 2502/103, 2508/103 June/July 2018

= 7+1/19-24 7+1/25

Three forces F1, F2 and F3 in newtons necessary to keep a certain mechanical system in (b) equilibrium satisfy the simultaneous equation:

$$2F_1 - F_2 + F_3 = 3$$

 $-F_1 + 2F_2 + 2F_3 = -3$
 $3F_1 - 2F_2 + F_3 = 2$

Use the method of elimination to determine the values of the forces.

(8 marks)

Prove the identities: 4. (a)

(i)
$$\frac{1 + \cos \theta}{\sin \theta} = \frac{\sin \theta}{1 - \cos \theta}$$

(ii)
$$\cos \theta + \cos 2\theta + \cos 3\theta = \cos 2\theta (2\cos \theta + 1)$$
 (6 marks)

- Given $\sin(\theta + \alpha) = 2\cos(\theta \alpha)$, show that $\tan \theta = \frac{2 + \tan \alpha}{1 + 2\tan \alpha}$. (b) (1)
 - (ii) Hence solve the equation $\sin(\theta + \frac{\pi}{4}) = 2\cos(\theta - \frac{\pi}{4})$, for values of θ between 0° and 360° inclusive. (6 marks)
- (c) Solve the equation:

 $3\cos 2\theta + \sin \theta + 2 = 0$, for values of θ between 0° and 360° inclusive.

(8 marks)

- Determine the values of M and N such that $5 \cosh x 3 \sinh x = Me^x + Ne^{-x}$. (a) (4 marks)
 - (b) (i) Derive the identity: $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$.
 - Use Osborne's rule to derive the identity for $\coth^2 x$ from the trigonometric (ii) identity: $1 + \cot^2 x = \csc^2 x$.

Block's +Smhis) -Swhx -7=0 Solve the equation: $3x \cos (x + 3) \cos (x) - \cosh (x - 7) \cos ($ (c)

(8 marks)

(8 marks)

2501/103, 2503/103, 2509/103 2502/103, 2508/103 June/July 2018

Sinks 4 | e' + 2 | e' - 8e' - 1 Furn over - bt \(\frac{1}{2} - 4974 \) e 2 - 1 = 8e' \| \frac{1}{2} - 265 \quad \frac{1}{2} \quad \frac{1}{2} \]

- 6. (a) Given the function $f(x) = \frac{3-x}{x+4}$, determine:
 - (i) f⁻¹(0)

193

(ii) $f^{-1}\left(-\frac{1}{2}\right)$

(7 marks)

- (b) (i) Show that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$.
 - (ii) Hence determine the value of $\tan^{-1}(1) + \tan^{-1}(\sqrt{3})$,

(8 marks)

(c) By expressing $\sinh^{-1}x$ in logarithmic form, determine the value of $\sinh^{-1}(6)$.

(5 marks)

7. (a) Given the complex numbers $Z_1 = -1 + 2_j$, $Z_2 = 1 + j$ and $Z_3 = \frac{1}{Z_1} + \frac{1}{Z_2}$, express Z_3 in polar form.

(8 marks)

- (b) Given that Z = f is one root of the equation $Z^3 + 3Z^2 + Z + 3 = 0$, determine the other roots. (5 marks)
- (c) Solve the equation:

 $Z^4 + 1 + j\sqrt{3} = 0$, giving the answers in polar form.

(7 marks)

- 8. (a) The sum of the first three terms of an arithmetic progression is 3, and the difference between the seventh term and the fourth term is -6. Determine the:
 - (i) first term and common difference
 - (ii) sum of the first thirty terms.

(6 marks)

a+colona184= -6 307+2=3

- (b) The third term of a geometric progression is eight times the sixth term, and the sum of the second and fifth terms is ⁹/₁₆. Determine the:
 - (i) first term and common ratio
 - (ii) sum of the first ten terms.

(7 marks)

(c) Express the equation of the parabola y² = 4 - 4x in polar form.

(7 marks)

THIS IS THE LAST PRINTED PAGE.

2501/103, 2503/103, 2509/103 2502/103, 2508/103 June/July 2018 - 1