1601/103 1602/103 MATHEMATICS I June/July 2017 Time: 3 hours

Haraing gray

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN ELECTRICAL AND ELECTRONIC TECHNOLOGY (POWER OPTION) (TELECOMMUNICATION OPTION) MODULE I

MATHEMATICS I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Mathematical tables/calculator.

Answer any FIVE of the EIGHT questions in the answer booklet provided.

All questions carry equal marks.

All necessary working must be clearly shown.

Maximum marks for each part of a question are as indicated.

Candidates should answer all questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2017 The Kenya National Examinations Council

Turn over

1. (a) Simplify the following expressions leaving your answer with positive indices:

(i)
$$\frac{2^{-4} \times 3^2 \times 5^{-3}}{2^3 \times 3^4 \times 5^{-2}}$$

(ii)
$$\frac{\left(6x^{-\frac{2}{3}}y^{-\frac{1}{3}}\right)8Z^{-\frac{1}{2}}}{12x^{-\frac{4}{3}}y^{\frac{1}{12}}Z^{\frac{1}{4}}}$$

(6 marks)

(b) Solve the equation:

$$\frac{16^{2x} \times 8^x}{4^x} = 64$$

(4 marks)

- (c) If $x = \frac{4}{9}$ and $y = \frac{16}{49}$, find:
 - (i) $\frac{4}{7} y^{-\frac{3}{2}}$

(ii)
$$\left(\frac{x}{y}\right)^{-\frac{1}{2}}$$

(6 marks)

(d) Solve the equation:

$$\log (x + 6) - \log (x - 3) = 1$$

(4 marks)

(a) Given the matrices:

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 \\ -2 & 4 \end{pmatrix}$,

determine:

- (i) A + B
- (ii) AB
- (iii) B^{-1}

(7 marks)

(b) Solve the equation:

$$\begin{vmatrix} 2-3x & -1 \\ 4x & 4 \end{vmatrix} = 0$$

(4 marks)

(c) Use the inverse matrix method to solve the simultaneous equations:

$$3x + 2y = 18$$

$$5x - 4y = 8$$

(9 marks)

_(a)	In a geometric progression, the sum of the third and fourth terms is 108. Extreption the fourth and fifth terms is 324, determine the:						
	615						
	(i)	common ratio;					
	(ii)	first term;					
1	(iii)	12 th term.	(10 a.l)				
			(10 marks)				
(b)		burth term of an arithmetic progression is 14 and the sum of the first Determine the:	six terms				
	(i)	first term;					
	(ii)	common difference;					
	(iii)	sum of the first sixteen terms.					
	74.00.000		(10 marks)				
35.2							
(a)	Conv						
	(i)	65 ₁₀ to binary.					
	(ii)	1100110101 ₂ to denary.					
Æ	(11)	1100110101 ₂ to denaty.	(6 marks)				
		9					
(b)		the sum to infinity of a geometric progression whose first term is 3 a non ratio is $\frac{1}{4}$.	and the (4 marks)				
(c)	Two forces F_1 and F_2 in newtons acting on a simple mechanical system satisfy the equations:						
	12	25 11					
	$F_1 +$						
	41-	$F_2 = 5$					
	Use (Cramer's rule to determine the values of the forces.					
			(10 marks)				
(a)	Give	en the data					
	42, 6	50, 85, 28, 11, 10, 12, 14, 17, 15, 22, 31, 85, 72, 12, determine the:					
	(i)	first quartile;					
	(ii)	third quartile;					
1.7	(iii)	interquartile range.					
	()	1	(7 marks)				

Á.

(b) The lengths of 100 electrical conduits in meters selected from a workshop were recorded as in Table 1 below.

Table 1

THOSE I				Γ	r	!	T
Length (m)	10-14	14-18	18-22	22 - 26	26 - 30	30 - 34	34 - 38
Number of conduits	6	10	20	38	16	6	4

Determine the median and the:

- (i) actual mean;
- (ii) standard deviation of the distribution, using an assumed mean of 24.

(13 marks)

6. (a) Given the numbers:

24, 32, 48 and 56, Find the:

- (i) L.C.M.
- (ii) G.C.D.

(5 marks)

- (b) Solve the following equations:
 - (i) $3^{2x+4} = 9^{3x-2}$
 - (ii) $2^{2x-3} = \sqrt{64}$

(7 marks)

- (c) Solve the equations:
 - (i) $\log_x 81 = \log_2 16$
 - (ii) $2^{x-1} = 3^{x+1}$

(8 marks)

(a) Convert 0.23 to a fraction.

(4 marks)

(b) Given that

 $M = \begin{pmatrix} x-2 & 4 \\ 2 & x \end{pmatrix}$ is singular matrix, determine the:

- (i) possible values of x;
- (ii) Write down two possible matrices M.

(6 marks)

- (c) A man travelled $\frac{1}{3}$ of his journey by road, $\frac{4}{5}$ of the remainder by air, and the first by LCOM rail. If the total distance travelled was 1,200 km, determine the distances he covered in each case.

 (6 marks)
- (d) An electrical device has an initial value of Ksh 8,000. If it depreciates at a rate of 12% per annum, determine using geometric progression, its value after 8 years.

(4 marks)

(a) Solve the equations:

8.

- (i) $(4^{4x})(2^{-2x}) = 64$
- (ii) $\log_2 x^2 + \log_2 4 = 4$
- 8000 (8) 100 (8) 100 (8) 100 (16) 800 X 84/100 (
- (b) The third, fourth and fifth terms of a geometric progression are t + 3, t + 8 and t + 18 respectively. Determine the:
 - (i) common ratio;
 - (ii) first term;
 - (iii) sum of the first 12 terms.

(12 marks)

14 B All 99

THIS IS THE LAST PRINTED PAGE.

LH+t12+=13+1+8+++10