1920/103 BASIC ELECTRONICS July 2017 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL CRAFT CERTIFICATE IN INFORMATION TECHNOLOGY

BASIC ELECTRONICS

3 hours

INSTRUCTIONS TO CANDIDATES

,

You should have an answer booklet for this examination:
Answer ALL questions in section A and any FOUR in section B.
Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (40 marks)

Answer ALL the questions.

- 1. Define each of the following terms as used in basic electronics:
 - (i) electrode;

(2 marks)

(ii) voltaic cell.

(2 marks)

- 2. With the aid of a sketch, outline a closed circuit of two capacitors in series $(C_1, C_2 \text{ and } C_3)$ and a voltage supply V. (4 marks)
- 3. Explain two methods used to encode BCD numbers.

(4 marks)

4. Using 2's complement, evaluate 1011 1111₂ – 1000 0001₂.

(4 marks)

- 5. Determine the octal equivalent for each of the following number systems:
 - (i) $E A 7_{16}$;

(2 marks)

(ii) $1101\ 1011_2$.

(2 marks)

- 6. Explain each of the following terms as used in BCD:
 - (i) floating point;

(2 marks)

(ii) bit.

(2 marks)

7. Explain how the circuit in figure 1 satisfies the voltage law.

(4 marks)

Figure 1

- 8. Calculate each of the following hexadecimal arithmetic:
 - (i) ADC+12E;

(2 marks)

(ii) 24CB-111E.

(2 marks)

9. Table 1 represent a truth table for logic gate. Draw the logic gate and label it appropriately.

(4 marks)

	A	В
	. 0	1
	1	0

Table 1

10. A computer company intended to use the extrinsic semiconductor material to develop some components. Explain two possible applications of the material. (4 marks)

í

SECTION B (60 marks)

Answer any FOUR questions from this section.

- 11. (a) (i) Explain two limitations of holographic storage. (4 marks)
 - (ii) Differentiate between volatile and non-volatile computer memories. (4 marks)
 - (b) (i) Determine the excess-3 equivalent of the BCD 1001 0110 1000 0000.

 (3 marks)
 - (ii) Determine the colour codes for each of the following resistors resistance:
 - (I) 75,000,000,005 ohms or 74,999,999,995 ohms; (2 marks)
 - (II) 34,000,020 ohms or 34,999,980 ohms. (2 marks)
- 12. (a) (i) Figure 1 shows symbols used for voltage sources. Identify the components labelled I and II. (3 marks)

Figure 1

(ii) Explain two properties that enable conduction of heat by electrons.

(4 marks)

- (b) (i) Using BCD, determine 811 + 777, giving the answer in hexadecimal. (3 marks)
 - (ii) Using K-map, simplify the function. (5 marks) Σ m (0, 1, 3, 9, 14, 15)
- 13. (a) (i) With the aid of a sketch, outline the relationship between voltage, current applied to a resistor in an AC circuit. (4 marks)
 - (ii) A circuit has a resistance of 60 Ω and conductance (G) of 1.5 x 10⁻³ siemens. Determine the:
 - (I) voltage (V)

(3 marks)

(II) current (I)

- (3 marks)
- (b) Simplify each of the following decimal number operations giving your answer in binary equivalent:
 - (i) 74 + 89; (2 marks)
 - (ii) 1/8 + 1/2. (3 marks)

1920/103

- 14. (a) (i) Outline two patterns of current flow in a Zener diode. (2 marks)
 - (ii) Differentiate between doped semiconductor and undoped semiconductor materials. (4 marks)
 - (b) (i) Table 2 shows truth table. Use the truth table to draw the logic gates used. (5 marks)

Input						Output
В	C	$B*C=\overline{M}$	A	D	A*D=N	$M+N=\overline{O}$
0	0	1	0	0	0	1
0	1	1	0	1	0	1
1	0	1	1	0	0	1
1	1	0	1	1	1	1

Table 2

- (ii) The lift mechanism in a building is controlled by four doors; A, B, C and D. The lift door is open whenever B and D are in the different positions. The lift door is open, on condition that A and C are high. Draw a truth table to represent the information. (4 marks)
- 15. (a) (i) Outline three techniques used for reducing radiation loss in AC circuits. (3 marks)
 - (ii) A group of students intend to write a term paper about De Morgan's theorem applied in Boolean algebra. Outline **five** reduction techniques they are likely to include in the paper. (5 marks)
 - (b) (i) DVD is one of the secondary memories used popularly to store movies. Explain two reasons for its popularity. (3 marks)
 - (ii) The potentiometer is used in the development of some appliances. Outline **four** areas of application of this component. (4 marks)

THIS IS THE LAST PRINTED PAGE.

٠ د