Name:	
2705/104	Candidate's Signature:
2707/104	
2709/104	Date:
2710/104	(Re-
SURVEYING I AND WORKSHOP	
TECHNOLOGY I (MECHANICAL)	

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN BUILDING TECHNOLOGY DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE

MODULEI

SURVEYING I AND WORKSHOP TECHNOLOGY I (MECHANICAL)

3 hours

INSTRUCTIONS TO CANDIDATES

June/ July 2014 Time: 3 hours

Write your name and index number in the spaces provided above.

Sign and write the date of examination in the spaces provided above.

You should have a Scientific calculator and drawing instruments for this examination.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer any TWO questions from section A, any TWO from section B and any other question from either section A or B in the spaces provided in this question paper.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

For Examiner's Use Only

Section	Question	Maximum Score	Candidate's score
	Parameter	20	
A		20	
		20	
		20	
В		20	
		20	
TO	OTAL SCORE	100	

This paper consists of 16 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: SURVEYING I

Answer any TWO questions from this section.

(a) Differentiate between plane surveying and geodetic surveying.

(3 marks)

(b) List any three branches of surveys.

(3 marks)

(c) Table 1 shows level readings taken between a permanent bench mark and a temporary bench mark. Using the information given, reduce the readings by the rise and fall method applying the arithmetic check. (14 marks)

Table 1

BS	IS	FS	Remarks
0.857			Bm (125,667 m)
	1,324	Mess	
	1.924		
1.042		2.864	
	1.696		A STATE OF THE STA
	0.498	100	
2.791		0.325	To the second
	2.164		
	1.213		
		0.462	TBm

(a) State five characteristics of contour lines.

(5 marks)

(b) Explain the three main errors encountered in levelling.

(9 marks)

(c) A back sight of 1.78 m is taken on to a bench mark of reduced level 651.87 m.

Determine the staff readings required to locate 650, 651, 652 and 653 contours respectively. (6 marks)

3. (a) Describe the procedure of direct method of contouring.

(5 marks)

(b) Reduce the following levels by height of collimation method applying suitable checks. (15 marks)

Table 2

BS	IS	FS	Remarks
1.632			Point A, RL = 54.173 m
3.467		1.124	Change point
	0.568		Point X
1.835		0.381	Change point
100	-2.473		Point Y
1.732		3.941	Change point
		2.484	Point B

- 4. (a) Explain the following terms as used in levelling:
 - (i) level line;
 - (ii) horizontal line;
 - (iii) parallax.

(6 marks)

(b) With the aid of diagrams, explain the "two peg" test in levelling.

(5 marks)

(c) Describe the temporary adjustment done to a dumpy level before its ready for use.

(9 marks)

SECTION B: WORKSHOP TECHNOLOGY I (MECHANICAL)

Answer any TWO questions from this section.

5.	With	With the aid of diagrams, explain the working process of an internal combustion engin				
			(20 marks)			
6.	(a)	State:				
		(i) any four safety measures to be taken when using a hacksaw.	(4 marks)			
		(ii) three disadvantages of having excessive drill feed.	(3 marks)			
	(b)	Sketch a drill bit and label the main parts.	(6 marks)			
	(c)	Using sketches, differentiate between a ball pein hammer and a claw ham	mer. (7 marks)			
7.	(a)	Define pressure as used in pumps.	(2 marks)			
	(b)	Explain the use of the following parts of a centrifugal pump:				
		(i) pump case; (ii) impellers,	(6 marks)			
			(o marks)			
	(c)	Sketch and label positive displacement pump.	(6 marks)			
	(d)	Explain how one would protect a positive displacement pump.	(4 marks)			
	(e)	State any two advantages of a reciprocating pump over a displacement pu	imp, (2 marks)			
8.	(a)	Sketch and label the structure of the ignition system of an engine.				
	(b)	Explain the function of the main parts labelled in (a) above.	(20 marks)			