2411/305 INSTRUMENTAL METHODS OF ANALYSIS Oct./Nov. 2017 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL DIPLOMA IN ANALYTICAL CHEMISTRY

INSTRUMENTAL METHODS OF ANALYSIS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: Answer booklet;

Non-programmable scientific calculator,
This paper consists of TWO sections; A and B.
Answer ALL the questions in section A and any THREE questions from section B.
Each question in section A carries 4 marks while each question in section B carries 20 marks.
Maximum marks for each part of a question are indicated.
Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates must check the question paper to ascertain that all the pages are printed and that no questions are missing.

© 2017 The Kenya National Examinations Council

Turn over

high products SECTION A (40 marks)

		Answer ALL the questions in this section.	
1.	Explair	why copper cannot be analysed by atomic emission spectroscopy (AES).	(4 marks)
2.	Explain why AAS does not suffer from severe spectral interferences.		
3.	volume an abso	tion of K ₂ Cr ₂ O ₇ was prepared by pipeting 50 cm ³ of a 0.1 M solution into a 5 etric flask and topping up to the mark with pure water. The 0.1 M solution has brbance of 1.2; 25 cm ³ of the diluted solution was pipetted into a 100 cm ² volud topped up to the mark with pure water.	d
	(a)	Write an expression for Beer-Lamberts Law.	(2 marks)
	(b)	Calculate the absorbance of the final diluted solution.	(2 marks)
· A	Decrei	be the preparation of 250 cm3 of a solution of sodium phosphate of concentra	tion
4.		m with respect to sodium. (Na = 23, P = 31, O = 16)	(4 marks)
5.	(a)	Define the following terms as used in IR spectroscopy:	22
		(i) fundamental;	(1 mark)
		(ii) fundamental;— (ii) overtone. Superactor of grandemontal.	(1 mark)
	(b)	The frequency of the fourth overtone of an IR active bond is 3050 cm ⁻¹ . C	alculate the
	(0)	frequency of the third harmonic.	(2 marks)
6.	(a)	(i) Define resolution as used in chromatographic methods of analysis.	(1 mark)
		(ii) Write down the expression used in estimating column resolution in l	ooth GL and
		HPLC.	(1 mark)
	(b)	State the tone method of increasing column resolution in:	
		(i) GLC; - Yeclus king.	(1 mark)
		(ii) HPLC MOVERAL X-010	(1 mark)
7.	(p)	State two methods of monochromation used in flame spectroscopy.	(2 marks)
	(b)	List two differences between a flame photometer and atomic absorption	de,
	(6)	spectrophotometer.	(2 marks)
8.	(a)	State the conditions for analysis of a sample by GLC.	(1 marks)
	(b)	Outline the principle of separation in a HPLC column by a normal phase	
	8077	chromatographic technique.	(3 marks)
241	1/305	2 0	100-62H
	Nov. 2017	as we	Jag-kan
		3	146

- 9. (a) Name two types of detectors used in IR spectrophotometer.
- Market Carrett delegra
- (b) IR radiation does not cause electron excitation like UV visible radiation because of low energy. Explain how a phototube incorporated in one of the detectors in (a) above functions.
 (3 marks)
- 10. Describe how the lovibond colour comparator is used in colorimetric analysis. (4 marks)

SECTION B (60 marks)

Answer any THREE questions from this section.

- 11. (a) Calculate the energy of one mole of photons of red light:
 - (i) whose frequency is $4 \times 10^{14} Hz$;

(3 marks)

(ii) wavelength of the radiation in nm. $(h = 6.63 \times 10^{-34} JS)$

(2 marks)

- (b) At a particular location and time, sunlight is measured on a one meter square solar collector with an intensity of 1000 W. The peak intensity of this sunlight has a wavelength of 560 nm. Calculate the rate at which the photons hit the solar collector per second.

 (5 marks)
 - (i) List any three properties of electromagnetic radiations. (3 marks)
 - (ii) Explain how each of the properties listed in (c)(i) above is used in the manufacture of spectroscopic instruments of analysis.
 (7 marks)
- (a) Explain why a solution of KMnO₄ which is purple in colour is analysed by passing green radiation of $\lambda = 545$ nm and not purple radiation of $\lambda = 480$ nm. (5 marks)
 - (b) (i) List five colorimetric methods of analysis. (5 marks)
 - (ii) State one limitation of colorimetry. (1 mark)
 - (iii) List any four advantages of colorimetry. (4 marks)
 - (c) In a colorimetric estimation of proteins in a urine sample, the following results were obtained. A 2500 cm³ sample had an absorbance of 0.814. The sample was than spiked with a 1.00 cm³ standard containing 5 mg of pure protein and the absorbance was 0.915. Calculate the concentration of the proteins in the urine sample in ppm. (5 marks)

*

- 19. (a) Define the following terms as used in UV-visible spectrophotometry:
 - (i) chromophore;

(I mark)

(ii) auxochrome.

(1 mark)

(b) The table I below shows some chromophores and their absorbance maxima in nm.

Table I

Table I	
Chromophore	λ _{nax} in nm.
>=<	190
)C=0	190 and 250
—C≡N	160
—- n̂ ≡ n	350
-N 0	270
0	easylvet

An organic compound showed absorption bands at $\lambda_{max} = 160$ nm and at $\lambda_{max} = 190$ nm. The composition by mass of the compound showed C = 67.7%, H = 5.75 and N = 26.4%. The empirical and molecular formulae are the same. Use this information to determine a possible structure for this compound.

(18 marks) '

14 (a) (i) Define the term hydrogen bonding.

(1 mark)

- (ii) State four effects of hydrogen bonding on the IR spectrum of a pure compound. (4 marks)
- (b) State five advantages of the pressed pellet techniques of preparing sample in IR spectroscopy. (5 marks)
- (c) The frequency of the -OH stretching vibration in CH₃OH is 3300 cm⁻¹. Estimate the frequency of the -OD stretching vibration in CH₃OD. (10 marks)

2411/305 Oct./Nov. 2017 (a) (i) Define stray radiation as used in AAS.

(I mark)

Identify two sources of stray radiation in AAS. (ii)

(2 marks)

- Stray radiation is spectral interference in AAS. Name five other causes of (iii) spectral interference in AAS, use of non-no nechromote perfection
- A sample was found to have a transmittance of 80% when analysed by AAS in the (b) absence of stray radiation:
 - (i) calculate the absorbance of the sample in presence of 15% stray radiation.

(11 marks)

delater increase have be (ii) State the effect of stray radiation on absorbance.

(1 mark)

THIS IS THE LAST PRINTED PAGE.

如虹