2601/201 2602/201 2603/201 CONTROL SYSTEMS AND PROGRAMMABLE LOGIC CONTROLLERS June/July 2020 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE II

CONTROL SYSTEMS AND PROGRAMMABLE LOGIC CONTROLLERS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Drawing instruments;

Non-programmable scientific calculator;

Log linear paper.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer any THREE questions from section A and any TWO questions from section B in the answer booklet provided.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

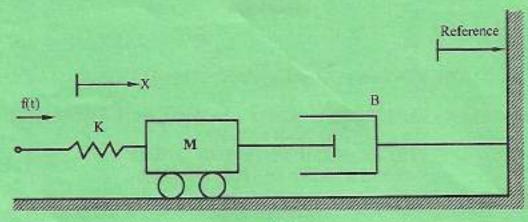
This paper consists of 10 printed pages and 1 insert.

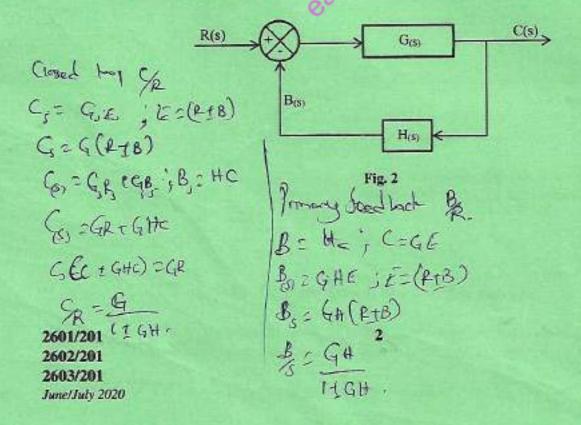
Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: CONTROL SYSTEMS

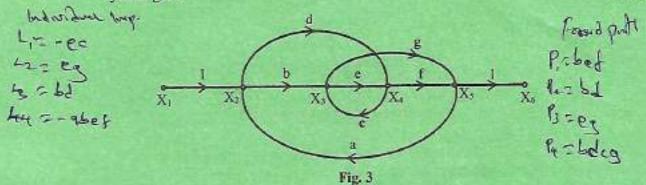
Answer any THREE questions from this section.

- (a) (i) Define system modelling as used in control systems.
 - (ii) Explain three reasons for system modelling of a physical system. (4 marks)
- (b) Figure 1 shows a simple mechanical translational system. Determine its transfer function, $\frac{X_{(s)}}{F_{(s)}}$. (9 marks)

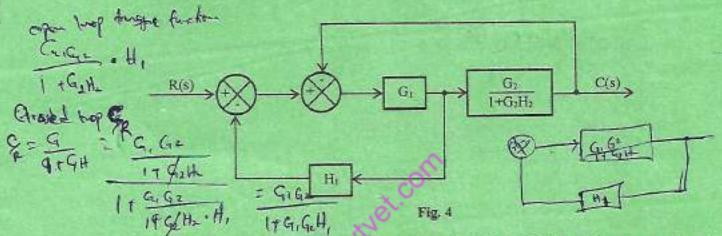



Fig. 1

(c) Figure 2 shows a block diagram of a control system. Derive each of the following:


(ii) closed loop transfer function; (ii) primary feedback ratio;

(iii) error ratio.


(7 marks)

(a) Figure 3 shows a signal flow graph representing a control system. Determine the system gain. (10 marks)

(b) Figure 4 shows a block diagram representation of a control system. Determine its transfer function using block diagram reduction technique. (7 marks)

(c) The temperature range of a controlled system is 200 K to 330 K and has a set point of 285 K. Determine the percentage of span error when the temperature is 297 K.

(3 marks)

3. (a) State three types of compensating networks.

Lead-Compensator - Lead by Compensator - Lag Compensator. (3 marks)

(b) An open loop control system is represented by the function

$$G_{(s)} = \frac{\alpha s \times 1}{s^2}$$

For a phase margin of 45°, determine the:

(i) expression for the gain cross over frequency;

(ii) the value of a.

(9 marks)

2601/201 2602/201 2603/201 June/July 2020 3

Turn over

Table 1 shows the phase angle - frequency values for a control system whose open loop (c) transfer function is:

$$G_{(s)} = \frac{10}{s(1+s)(1+0.02s)}$$

- (i) Using asymptotic approximation, sketch the bode diagram for the system.
- (ii) From the bode diagram, determine the:
 - gain cross over frequency;
 - phase cross over frequency; П.
 - Ш. gain margin.

(8 marks)

Table 1

ω rads	0.2	0.5	1.0	3.0	5.0	10	50
Phase degrees (ϕ^*)	-102	-117	-136	-165	-174	-186	-224

Table 2 shows mechanical - electrical analogy for control system. Complete the table. 4. (a) (5 marks)

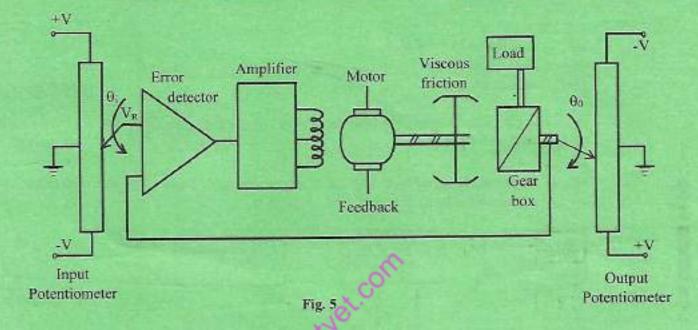
Table 2

Translational	Electrical	Rotational
Force (F)	Voltage (V)	
	THE PARTY OF	Inertia (I)
Damper (B)		V.O.

- (b) A control system consists of a series RLC network:
 - (i)
 - draw the network; $Q_{(s)} = \frac{Q_{(s)}}{C} + \frac{Q_{(s)}}{C}$ where Q is the charge. (ii) (7 marks)
- A servomechanism is represented by the equation (c)

$$\frac{d^3\theta}{dt^3} + \frac{10d\theta}{dt} = 150 \left(r - \theta\right)$$

Where r is the reference input and θ is the output shaft position. For the system, determine the:


- undamped frequency; (i) -
- damping ratio; (ii)
- (iii) damped frequency.

(8 marks)

- (a) With the aid of a labelled circuit diagram, explain the principle of operation of a phase sensitive rectifier. (9 marks)
 - (b) State any two essential features of a servo mechanism.

(2 marks)

- (c) Figure 5 shows a schematic block diagram of position control system used to control the motion of a radar.
 - (i) State the function(s) of each element used.
 - (ii) Calculate the gear ratio needed for maximum acceleration if the inertia of the motor and load are 11 kg·m² and 363 kg·m² respectively. (6 marks)

(d) Explain dead zone with respect to remote position control (R.P.C) systems. (3 marks)

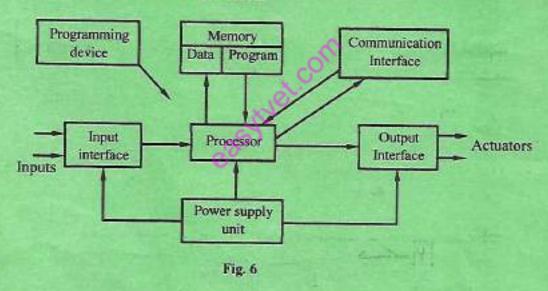
SECTION B: PROGRAMMABLE LOGIC CONTROLLERS

Answer any TWO questions from this section.

- (a) With the aid of a labelled block diagram, define each of the following data transmission modes:
 - (i) half duplex;
 - (ii) full duplex.

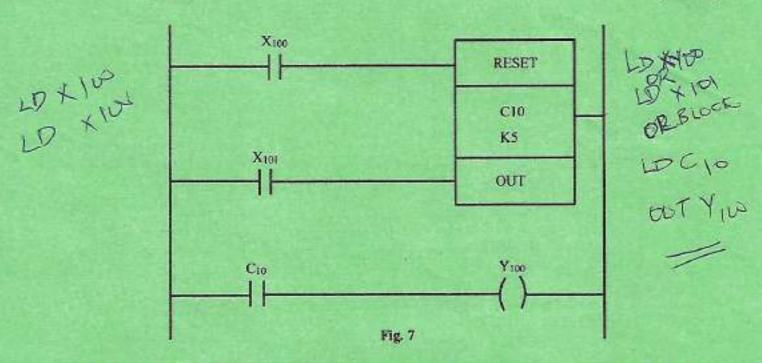
(6 marks)

- (b) With the aid of a labelled diagram, describe each of the following types of transmission media:
 - (i) unshielded twisted pair;
 - (ii) coaxial cable;
 - (iii) optical fibre cable.


(12 marks)

(c) State two advantages of optical fibre cable over copper transmission cables.

(2 marks)


 (a) (i) Figure 6 shows a block diagram of a programmable logic controller. Describe the functions of each block.

(ii) State three types of PLC output interfaces.

(10 marks)

(b) Figure 7 shows a ladder diagram for a PLC. Write down its equivalent instruction list program. (7 marks)

- (c) Draw a labelled circuit diagram of an apto-isolator used at the input terminal of a PLC.

 (3 marks)
- (a) With the aid of a labelled diagram, describe each of the following types of SCADA systems:
 - (i) centralized;
 - (ii) distributed.

(8 marks)

(b) Table 3 shows the functions of different layers of an open system interconnection (OSI) reference model. Identify the layers labelled A, B, C and D. (4 marks)

Table 3

Layers	Functions
A	It defines protocols responsible for sending data.
В	It defines the switching that routes data between system in the network.
С	Concerned with coding and transmission of information. It synchronizes data transfer.
D	It defines the protocols for sending and receiving information between two connected systems.

- (c) Draw ladder logic program for each of the following Boolean functions:
 - (i) $X_1 = U\overline{V} + \overline{U}V + UW$
 - (ii) $X_2 = U\overline{V} W + UVW$

(8 marks)

easywet.com