2915/203 CHEMICAL ANALYTICAL METHODS II AND BIOCHEMICAL TECHNIQUES June/July 2020 Time: 4 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL DIPLOMA IN ANALYTICAL CHEMISTRY MODULE II

CHEMICAL ANALYTICAL METHODS II AND BIOCHEMICAL TECHNIQUES

4 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: Answer booklet;

Non-programmable scientific calculator.

This paper consists of TWO sections; A and B.

Answer ALL questions in section A and any THREE questions from section B.

Each question in section A carries 4 marks while each question in section B carries 20 marks. Maximum marks for each part of the question are indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (40 marks)

Answer ALL the questions in this section.

1. Figure 1 shows a structure of serine. Study and use it to answer the questions that follow.

- (a) Copy the structure and draw a circle around each atom or group of the serine molecule which would be removed when two other amino acid molecules join directly to it.

 (2 marks)
- (b) Name the **two** substances that would be formed in (a). (2 marks)
- 2. Lactose is formed from a molecule of α -D-glucose and a molecule of one of its epimers.
 - (a) Define the term epimers. differs in configuration (2 marks)
 - (b) Write the structure of the epimer referred herein using the Fischer Projection formula.

 (1 mark)
 - (c) The formula of glucose is C₆H₁₂O₆. Give the formula. (1 mark)
- 3. A quantitative Benedict's test can be used to determine the concentration of a reducing sugar in a solution. During a practical lesson, a student decided to find the concentration of a suspected glucose sample. Describe how this could be accomplished by x/ay of a calibration curve.

4. Consider the following reactions:

tions:
$$H_{2}PO_{4(aq)} + CO_{2(aq)}^{2} \rightleftharpoons HCO_{3(aq)} + HPO_{4(aq)}^{2}$$

$$and$$

$$H_{2}O_{(1)} + SO_{3(aq)}^{2} \rightleftharpoons OH_{(aq)} + HSO_{3(aq)}^{2}$$

For each of the reactions, explain how the conjugate acid-base pairs can be identified.

(4 marks)

(4 marks)

	GIVC.	TOTAC names to each of the following small pepudes:			
	(a)	Glu-Ser-Ala			
	(b)	Gly-Tyr-Leu			
	(c)	Gly-Ala-Leu			
	(d)	Gly-Tyr-Ser-Ser	(4 marks)		
6.	Evnla	in two disadvantages of evaniments, as a mathed of a solution			
0.	Lapia	in two disadvantages of gravimetry as a method of analysis.	(4 marks)		
7.	Draw	Draw a labelled diagram gravity filtration in operation. (4 mar			
8.	State	State four criteria used in selecting a filter paper for a filtration process. (4 mark			
9.	(a)	Define the phrase acid value as used in lipids.	(1 mark)		
	(b)	Explain the importance of acid value.	(3 marks)		
10.	(a)	Define the phrase iodine-value of a fatty acid.	(1 mark)		
	(b)	Describe how the iodine value of a fatty acid is estimated.	(3 marks)		
			Meighing		
		SECTION BUGO model	ellistive ellistic		
		SECTION B (60 marks)	Fritzing		
		Answer THREE questions from this section.	Burning/churry		
			Weighing		
11.	(a)	Derive the Henderson - Hasselbalch equation.	colould (10 marks)		
	(b)	An environmental chemist needs a carbonate buffer of pH = 10.00	to study the effects		
		of acid rain on limestone-rich soils. Determine the amount, in gra	ms, of Na ₂ CO ₃		
		that must be added to 1.5 litres of freshly prepared 0.20 M NaHCC			
		(Ka of $HCO_3^- = 4.7 \times 10^{-11}$).	(10 marks)		
12.	(a)	State five characteristics of a good filter medium.	(5 marks)		
	(b)	Describe the preparation of filter pulp.	(5 marks)		
	(c)	List eight steps which are followed during gravimetric analysis.	(8 marks)		
	(d)	State four factors that affect solubility of a precipitate.	(2 marks)		

13. Define the phrase isoelectric point. (a) electrically neutral - plt to neutral

(2 marks)

- (b) Using structural formulae, explain the direction of movement of each of the following amino acids in solution at the pH value specified, under the influence of an electric field:
 - (i) Alanine (pH = 12.0) (3 marks) (ii) Valine (pH = 5.97);
 - (3 marks) (iii) Aspartic acid (pH = 1.0); (3 marks) (iv) Lysine (pH = 13.0).
 - (3 marks)

(c) List four types of attractive forces that give rise to tertiary structure of a protein.

(4 marks)

(d) State the meaning of the phrase Primary structure of a protein. (i) (1 mark)

(ii) Name the type of bond responsible for the primary structure of a protein.

(1 mark)

- 14. Explain the following terms: (a)
 - (i) glycosides; (ii)

glucosides.

(2 marks)

(2 marks)

Figure 2 is a flow chart showing the isolation of chloroplasts from leaves. Study and (b) use it to answer the questions that follow:

Explain why:

(i) the leaves were homogenized;

(ii) a buffer solution was used. (2 marks)

(2 marks)

(c) Table I shows some of the organelles present in the leaf cells.

Organelle	X	Y	Z
	arrang a		
Fraction containing organelle			

- (i) Determine in which of the pellets A or B or the supernatant C one would expect to find the organelles X, Y and Z. (3 marks)
- (ii) Organelle X is found in large numbers in cells which take up substances by active transport. Explain. (3 marks)
- (c) Draw the Haworth projection formula and give the systematic name of the monosaccharide(s) produced from the hydrolysis of:
 - (i) sucrose;
 - (ii) maltose.

(6 marks)

- Using a labelled diagram, describe the method used in estimation of lipids in a food sample. (14 marks)
 - (b) Calculate the:
 - (i) specific refraction;

(3 marks)

(ii) molar refraction of C₁₂H₂₂O₁₁.

density, $\rho = 1.010 \text{ g/cm}^3$ $\eta = 1.3388 \text{ and f.wt} = 342$

(3 marks)