2521/205 2601/205 ELECTRICAL POWER GENERATION, TRANSMISSION AND PROTECTION June/July 2022 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) MODULE II

ELECTRICAL POWER GENERATION, TRANSMISSION AND PROTECTION

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

- answer booklet;
- non-programmable scientific calculator;
- drawing instruments.

This paper consists of TWO sections; A and B.

Answer any THREE questions from section A and any TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: ELECTRICAL POWER GENERATION AND TRANSMISSION

Answer any THREE questions from this section.

- 1. (a) Describe each of the following as used in electric power supply:
 - (i) Capacity factor.
 - (ii) Demand factor.

(4 marks)

- (b) A power station has the peak load of 30 MW. The loads having maximum demands of 25 MW, 10 MW, 5 MW and 7 MW are connected to the station. The capacity of the power station is 40 MW and annual load factor is 50%. Determine the:
 - (i) Average load;
 - (ii) Energy supplied per year;
 - (iii) demand factor.

(6 marks)

- (c) Explain each of the following causes of low power factor:
 - (i) inductive loads;
 - (ii) variations in power system loading;
 - (iii) harmonic current.

(6 marks)

(d) Table 1 shows the power demand for a 1 MW generating station supplying a given region. Draw the daily load curve.

Table 1

From	То	Demand (kW)	
12.00 a.m.	5.00 a.m.	200	
5.00 a.m.	6.00 a.m.	100	
6.00 p.m.	7.00 p.m.	600	MILITARY I
7.00 p.m.	9.00 p.m.	900	
9.00 a.m.	12.00 p.m.	600	

got realment /

<u>2.</u>	(a)	State any four factors considered when selecting a site for hydro-electric power plant.	
			(4 marks)
	(b)	Describe each of the following components of a hydro-power plant:	
		(i) Turbine; Le	
		(ii) Forebay; (iii) Track rack,	
			(6 marks)
	(c)	With the aid of a labelled diagram, describe the operation of Kaplan turbine	
			(7 marks)
	(B)-	In a power plant, the steam from the boiler reaches the turbine at a temperate 700°C. The spent steam leaves the turbine at 100°C. Determine the maxim	ure of
		efficiency of the turbine.	(3 marks)
3.	(a)	List four properties of insulating materials for cables used in power systems	
		electrical resistan	(4 marks)
	(b)	With the aid of a labelled cross-sectional diagram, explain the construction of H-type 3-core screened cable.	
	(c)	Explain the capacitance method of grading cables.	(6 marks)
	(d)	A 66 kV 50Hz 3-phase transmission line uses a 2 km long 3-core undergroun	(4 marks)
		relative permittivity of 3 Determine the:	and
		(i) capacitance of cable per phase;	is to
aurm	put	(ii) voltage per phase; (iii) total charging kVAR.	m culton
Occ		(i) capacitance of cable per phase; (ii) voltage per phase; (iii) total charging kVAR. State four merits of suspension insulators as used in transmission lines.	o{ &(ð marks)
A	(a)	State four merits of suspension insulators as used in transmission lines.	(4 marks)
	(b)		
		(i) use of longer cross-arms. A Provides greater	new(=
		(i) use of longer cross-arms. If the conductor reactive grading the insulators. (ii) use of a guarding	brou
		(iii) use of a guarding.	
2521/2	05		(6 marks)
2601/2		3	

Turn over

June! July 2022

(c)						
	follov	ving characteristics:	Q			
		resistance; $r = 0.103 \ \Omega/km$ inductive reactance ; $x = 0.525 \ \Omega/km$	3-1/N			
		admittance; $y = 3.3 \times 10^{-6} \text{ S/km}$				
	The line supplies rated voltage and apparent power at 0.9 power factor lagging. Determine the:					
	(i)	per phase series impendance;				
	(ii)	shunt admittance;				
	(iii)	rated line current.				
			(8 marks)			
(d)	List to	wo merits of aluminum overhead conductors.	(2 marks)			
-(a)	Defin	e each of the following with respect to fuses:				
	(2)	cut-off current; cur nex. Courrent ce e ushice pre-arcing time;	nt			
	(i) (ii)	pre-arcing time;				
	(iii)	rupturing capacity ?				
	(III)	rupturing capacity	(3 marks)			
			(5 marks)			
(b)	With	7ith the aid of a labelled diagram, explain the operation of a cross blast air circuit				
	break	er.	(7 marks)			
(c)	Explain the functions of each of the following elements of an excitation system:					
	(i)	regulator;	· 1			
	(ii)	load compensator;				
	(iii)	limiters.	(6 mortes)			
	Princip.	load compensator; limiters.	(6 marks)			
(d)	ESSA PARUANDAN AND SANDER OF SANDERS NO DESSA DE SANDER AND SANDER DE SANDER DE SANDER DE SANDER DE SANDER DE					
		er needed.	(4 marks)			

SECTION B: BUILDING SERVICES PROTECTION

Answer TWO questions from this section.

- 6. (a) Distinguish between pitting and selective dissolution types of corrosion citing an example in each case.
 - (b) With the aid of a labelled schematic circuit diagram, explain impressed current cathodic protection method of corrosion. (6 marks)
 - (c) Explain the uses of each of the following electrical systems on a caravan site:
 - (i) 240 V mains.
 - (ii) 12 V battery system. _ parities back up power (4 marks)
 - (d) (i) Outline **four** precautions to be taken to prevent corrosion.
 - (ii) Describe the process of electrolyte corrosion.

(6 marks

4

(a) Define each of the following as applied in lighting protection:

- (i) upward flash;
- (ii) thunder cloud.
- (b) Describe three components of a lighting protection system. (6 marks)
- (c) With the aid of a labelled diagram, describe the operation of a mercury vapour lamp.

 (6 marks)
- (d) A room of dimensions 18 m by 12 m is to be illuminated with an average illumination of 150 lux. 24 lamps are to be fitted at 6 m height. The efficiency of the lamps is 20 lumens /W with a utilization factor of 0.6 and a maintenance factor of 0.75. Determine the:
 - (i) total gross lumens required;
 - (ii) total wattage required;
 - (iii) wattage of each lamp.

(6 marks)

Turn over

2521/205 2601/205

June/ July 2022

8. (a) Define each of the following as used in water distribution systems:

> (i) screening;

(2 marks)

Explain each of the following water systems as used in building services: (b)

(i)

high-level reservoir; - Harris & Compost for the source to the direct pumping.

direct pumping. (ii)

Notes to directly pumped from the 44 marks)

A wiring system consists of two light/fan circuits of 800 watts each and two 15 Amp socket circuits of 1000 watts each. If the overall power factor is 0.8 lagging. Determine the

- load wattage in the two light/fan sub-circuit; (i)
- (ii) load wattage in the two socket circuits;
- (iii) total wattage;
- (iv) total current.

(8 marks)

(d) **Figure 1** shows a installation diagram.

Fig. 1

- (i) Identify the components T_1 , and X_1
- (ii) Draw a wiring diagram of the installation for a ring circuit with a spur.

(6 marks)

THIS IS THE LAST PRINTED PAGE.