2521/304 2601/304 POWER ELECTRONICS, MACHINES AND UTILIZATION Oct/Nov. 2022

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) MODULE III

POWER ELECTRONICS, MACHINES AND UTILIZATION

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Non-programmable electronic calculators;

Drawing instruments.

This paper consists of TWO sections; A and B.

Answer FIVE questions choosing THREE questions from section A and TWO questions from section B in the answer booklet provided.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take: $\varepsilon_0 = 8.85 \times 10^{-12} \, F/M$

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council

Turn over

SECTION A: MACHINES AND UTILIZATION

Answer THREE questions from this section.

1.	(a)	(i)	State two constructional features differentiating variable reluctance and permane magnet stepper motors.	ent
		(ii)	With aid of a labelled diagram, explain the operation of a variable reluctance motor. (8 mark	ks)
	(b)	With	reference to synchronous motors, state two:	
		(i) (ii)	effects of hunting; methods of reducing hunting. (4 mar	ks)
	(c)	100 A	2 kV, three phase, star connected synchronous motor draws a full load current of at 0.85 p.f leading. The armature resistance is 3.2 Ω and a synchronous reactan Ω per phase. If the stray losses are 400 W, determine the:	ice
		(i) (ii) (iii)	E.m.f. induced E _f ; power input; power output.	
		03 3	(8 mar	ks)
2.	(a)		reference to motor rating, explain each of the following duty cycles:	
		(i)	intermittent periodic;	
		(ii)	continuous. (4 mar	rks)
	(b)	from	temperature rise of a motor is 50°C after 1 hour and 75°C after 2 hours of startin initial conditions. If the temperature falls from final steady value of 60°C in 1.5 s when disconnected, the ambient room temperature is 30°C. Determine the:	g 5
		(i) (ii)	heating time constant τ ; final steady temperature rise;	
		(iii)	cooling time constant τ_e . (12 ma	rks)
	(c)	For	each of the following, state two:	
		(i)	merits of using electric drive in rail traction system;	
		(ii)	requirements of electrical traction systems.	THE OWNER OF THE OWNER.
			(4 ma	irks)

2521/304 2601/304 Oct./Nov. 2022

3.	(a)	 State two drawbacks of the stator resistance starting method of three-phase induction motors. 			
			light two differences between the approximate equivalent circuit of an tion motor and a power transformer. (4 marks)		
	(b)	A 400 V, 25 hp, 60 Hz, 4 pole, star-connected induction motor has the following per phase impedances referred to stator circuit.			
		$R_1 = 0.64 \Omega$	$R'_{i}=0.33 \Omega$		
		$X_1 = 1.11 \Omega$	$X_i = 0.46 \Omega$		
		$X_n = 28\Omega$			
		The rotations	al losses are 1200 W at a slip of 2%.		
		Determine th	ne:		
		(ii) rotor (iii) total	nronous speed N_s ; mechanical shaft speed N_c ; referred impedance Z_T ;		
		(iv) stator	current I ₁ . (12 marks)		
	(c)	With aid of labelled block diagrams, explain each of the following types of drives:			
		(i) group			
		7.100	-motor.		
			(4 marks)		
4.	(a)	With referen	ce to alternators, state two advantages of stationary armature windings. (2 marks)		
	(b)	Two 3-phase, star connected alternators A and B supply a total load of 20 MVA at 0.8 lagging p.f at a line voltage of 6.6 kV. The two alternators are rated at 10 MVA, 6.6 kV each. Machine A is operating on full load at 0.85 lagging power factor (p.f.)			
		(i) Sketc	ch the connection diagram.		
		(ii) Deter	rmine the:		
		(I) (II)	total load current; current and power factor of machine B. (7 marks)		

- (c) (i) Explain the functions of each of the following refrigerant properties in air conditioning and refrigeration:
 - fluid viscosity;
 - (II) evaporating pressure.
 - (ii) With aid of a labelled diagram, explain the function of the parts of a centrifugal compressor air conditioning system.

(11 marks)

5. (a) State two merits of back to back test on D.C machines.

(2 marks)

(b) With aid of a circuit diagram, show that using the swin burne test method on d.c motor, the efficiency of a motor is given by the expression:

$$\eta = \frac{VI - \left[\left(I - I_{Sh} \right)^2 r_o + W_c \right]}{VI}$$

where V is the supply voltage I is the supply current I_{ω} is the shunt motor current r_{ω} is the armature resistance W_{c} is constant losses.

(8 marks)

(c) Figure 1 shows the Hopkinson test circuit diagram on two similar shunt machines which gave the following data:

Line voltage = 120 V,

Line current = 50 A,

Armature current = 240 A,

Field current for motor and generator are 4A and 4.5 A respectively Armature resistance of each machine is 0.04Ω , brush drop = 1 V/brush.

Fig. 1

Determine the:

- (i) motor copper losses;
- (ii) general copper losses.

(10 marks)

SECTION B: POWER ELECTRONICS

Answer TWO questions from this section.

- With reference to power MOSFET, explain each of the following regions in the voltage current (V-I) characteristic.

 (i) cut-off region;
 (ii) active region;
 - (b) With aid of a labelled V-I characteristic curve, describe the operation of a Triac.
 (7 marks)
 - (c) A controlled half-wave rectifier has a peak supply voltage of 300 V and a 100 Ω load. For a firing angle of 30°, determine the:
 - (i) average load voltage;

ohmic region.

- (ii) average load current;
- (iii) load power.

(iii)

(7 marks)

(6 marks)

- (a) (i) With reference to thyristor inverters, distinguish between line and forced commutation.
 - (ii) Figure 2 shows a circuit diagram of a series inverter. Determine the:
 - (I) resonance frequency;
 - (II) time period of oscillations.

(7 marks)

2521/304 2601/304 Oct/Nov. 2022 5

Turn over

- (b) (i) State two areas of application of cycloconverters.
 - (ii) Figure 3 shows a circuit diagram of a step-down cycloconverter. Describe its operation such that the output frequency f_s equals $\frac{1}{4}$ the supply frequency f_s (8 marks)

(c) With aid of labelled torque-speed characteristic curves, explain how the speed of an induction motor may be controlled by varying the frequency. (5 marks)

- (a) With aid of a labelled diagram, explain the working principle of indirect resistant heating. (5 marks)
 - (b) In a dielectric heating process, the capacitance formed between the two electrodes is 4.5 μF. If the supply voltage is 900 V and the current flowing through the capacitor is 80 A, determine the supply frequency. (4 marks)
 - (c) The speed of a separately-excited d.c motor is controlled by a chopper. The circuit has a supply voltage of 110 V, armature circuit resistance of 0.5 Ω and motor constant of 0.05 V/rpm. If the motor drives a constant load torque requiring an average current of 20 A and assuming motor current is continuous, determine the:
 - (i) range of speed control;
 - (ii) range of duty cycle.

(9 marks)

(d) State two advantages of using thyristors over motor-generator set during speed control of d.c drives. (2 marks)

THIS IS THE LAST PRINTED PAGE.

2521/304 2601/304 OctJNov. 2022