2521/205 2601/205 ELECTRICAL POWER GENERATION, TRANSMISSION AND PROTECTION Oct/Nov. 2022

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) MODULE II

ELECTRICAL POWER GENERATION, TRANSMISSION AND PROTECTION

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

- Answer booklet;
- Non-programmable scientific calculator;
- Drawing instruments.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer any THREE questions from section A and any TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take: $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/M}$ $N_0 = 4\pi \times 10^{-7} \text{ H/M}$ $\text{leV} = 1.6 \times 10^{-19} \text{ J}$

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council

SECTION A: ELECTRICAL POWER GENERATION AND TRANSMISSION

Answer any THREE questions from this section.

1.	(a)	State I	two merits of thermal power generation.	(2 marks)	
	(b)	Describe each of the following components of a thermal power station:			
		(i)	boiler;		
		(ii)	economizer;		
		(iii)	alternator.	(6 marks)	
	(c)	Distinguish between impulse and reaction turbines as used in steam power plants.		generating (4 marks)	
	(d)	 A 500 kW steam power generating station uses coal of calorific value 6400. Thermal efficiency is 40% and electrical efficiency of the station is 92%. I 			
		(i)	overall efficiency of the power station;		
		(ii)	units generated / hour,		
		(iii)	heat produced per hour;		
		(iv)	coal consumption / hour.	(8 marks)	
2.	(a)		nguish between each of the following as used in power generation omics:		
		(i)	connected load and peak load;		
		(ii)	diversity factor and load factor.	(8 marks)	

(b) Figure 1 shows a typical daily load curve for a power station. Draw the corresponding load duration curve. (5 marks)

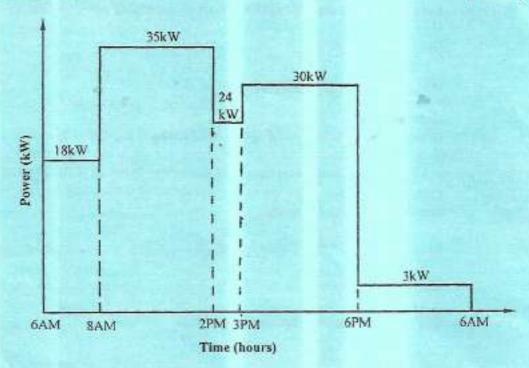


Fig. 1

(c) Table 1 shows the daily demands of three consumers.

Table 1

Time	Consumer 1	Consumer 2	Consumer 3
12 Midnight to 8 a.m.	No load	200 W	No load
8 a.m. to 2 p.m.	600 W	No load	200 W
2 p.m. to 4 p.m.	200 W	1000 W	1200 W
4 p.m. to 10 p.m.	800 W	No load	No load
10 p.m. to midnight	No load	200 W	200 W

Determine the:

- maximum demand of individual consumers;
- (ii) diversity factor;
- (iii) load factor of the station.

(7 marks)

2521/205 2601/205 Oct/Nov. 2022 3

Turn over

(b) Figure 1 shows a typical daily load curve for a power station. Draw the corresponding load duration curve. (5 marks)

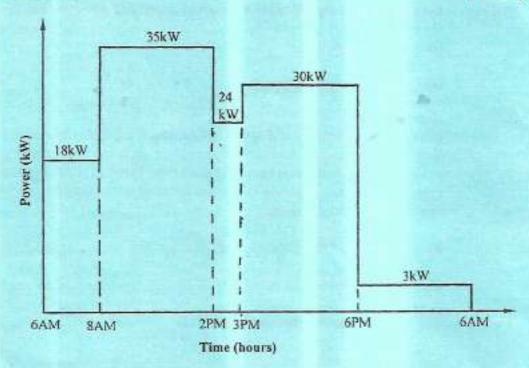


Fig. 1

(c) Table 1 shows the daily demands of three consumers.

Table 1

Time	Consumer 1	Consumer 2	Consumer 3
12 Midnight to 8 a.m.	No load	200 W	No load
8 a.m. to 2 p.m.	600 W	No load	200 W
2 p.m. to 4 p.m.	200 W	1000 W	1200 W
4 p.m. to 10 p.m.	800 W	No load	No load
10 p.m. to midnight	No load	200 W	200 W

Determine the:

- (i) maximum demand of individual consumers;
- (ii) diversity factor;
- (iii) load factor of the station.

(7 marks)

3.	(a)	State	three causes of low power factor.	(3 marks)		
	(b)	Descr	ribe each of the following methods of improving power factor:			
		(i)	static capacitor;			
		(ii)	synchronous condenser.	(4 marks)		
	(c)	Draw	a labelled schematic diagram of a brushless excitation system.	(5 marks)		
	(d)	A 100 kW induction motor operating at a power factor of 0.707 lagging and a 50 kV synchronous motor operating at a power factor of 0.9 leading are fed from a single phase supply. Determine the:				
		(i)	apparent power for each load;			
		(ii)	reactive power for each load;			
		(iii)	power factor of the combined loads.	(8 marks)		
4.	(a)	Explain the functions of each of the following parts of an undergroun		ble:		
		(i)	insulation; bedding;			
		(ii)	bedding;			
		(iii)	serving.	(6 marks)		
	(b)					
	(0)	With the aid of a labelled cross-section diagram, explain the construction of a H-type screened cable. (8 mar				
	(c)	A 11 diame	m ² and internal			
		(i)	maximum electrostatic stress;			
		(ii)	minimum electrostatic stress.			
				(6 marks)		

- 5. (a) State three properties of line supports used in overhead lines. (3 marks) (b) Describe each of the following methods of improving the string efficiency of overhead line suspension insulators: (i) grading insulators; using a guard ring. (ii) (6 marks) With the aid of a labelled diagram, describe the construction of SFs circuit breaker. (c) (7 marks) (d) A short circuit test on a circuit breaker gave the following readings:- time to reach peak re-striking voltage =50μ sec peak - restriking voltage = 100 kV. Determine the: average rate of rise of re-striking voltage (RRRV); (i) (ii) frequency of oscillations. (4 marks) SECTION B: ELECTRICAL POWER PROTECTION Answer TWO questions from this section. 6. State three merits of using impressed current cathodic protection. (a) (3 marks)
 - (b) Explain each of the following requirements on a cathodic protection:
 - (i) electrical continuity;
 - (ii) electrical isolation;
 - (iii) testing equipment.

(6 marks)

2521/205 2601/205 Oct/Nov. 2022 5

Turn over

	(c)		neutral earthing			
		metho	od.	(7 marks)		
	(d)	Outline the procedure of measuring the resistance of the earth continuity				
7.	(a)	Distin	guish between each of the following as used in lighting:	- FRE		
		(i)	reduction factor and lamp efficiency;			
		(ii)	mean spherical candle power and mean hemispherical candle	e power.		
				(4 marks)		
	(b)	State	two types of lighting schemes.	(2 marks)		
	(c)	With the aid of a diagram, describe the construction of a gas filled tungsten filamen lamp. (8 m				
	(d)	A room 16 m x 8 m is illuminated by 100 W incandescent lamps of lumen output of 1600 lumens. The average illumination required at the work surface is 300 lux, the utilization factor is 0.5 and the depreciation factor is 1.				
			mine the number of lamps required.	(6 marks)		
8.	(a)	Defin	e each of the following terms as used in lighting protection:			
		(i)	air terminal;			
		(ii)	arrestor;			
		(iii)	flash over.	(3 marks		
	(b)	Expla	nin three hazards caused by lighting.	(6 marks		
	(c)	Outli	ne three IEE regulations concerning lamp holder in an electri-	cal installation.		

(3 marks)

(d) Figure 2 shows an installation diagram of a lighting circuit.

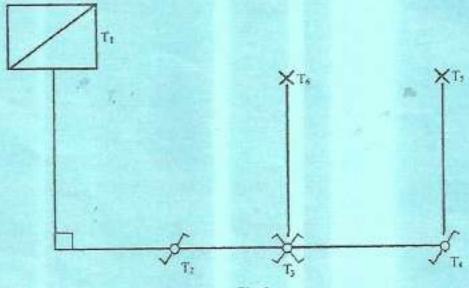


Fig. 2

- (i) Name the components labelled T_1, T_2, T_3 and T_6
- (ii) Draw a wiring installation diagram such that T₆ and T₅ operate simultaneously and are controlled from three positions.

(8 marks)

THIS IS THE LAST PRINTED PAGE.