2521/304 2601/304 POWER ELECTRONICS, MACHINES AND UTILIZATION June/July 2019 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION)

MODULE III

POWER ELECTRONICS, MACHINES AND UTILIZATION

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Non programmable electronic calculator:

Drawing instruments.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer THREE questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: MACHINES AND UTILIZATION

Answer THREE questions from this section.

1. (a) State four advantages of individual drives over group drives.

(4 marks)

- (b) A constant speed motor has the following duty cycle:
 - Load rising linearly from 300 kW to 500 kW in 4 minutes;
 - Uniform load of 350 kW for 2 minutes;
 - Regenerative power returned to supply reducing linearly from 350 kW to zero in 3 minutes;
 - Remains idle for 3 minutes.

If the duty cycle is repeated indefinitely, determine the suitable size of a continuously rated motor for the duty-cycle. (11 marks)

(c) The initial temperature of a machine is 40 °C. The machine has a final steady temperature rise of 90 °C and a heating time constant of 2.5 hours. If the ambient temperature is 20 °C, determine the temperature of the machine after 1.4 hours.

(5 marks)

2. (a) The power developed by a d.c shunt motor is given by:

 $P_d = E_b I_a$ Where:

 E_b is the armature back e.m.f and I_a is the armature current, show that the torque (T) developed is proportional to $I_{sh}I_a$. (5 marks)

- (b) With the aid of a labelled diagram, explain the rheostatic (armature) speed control method of a d.c shunt motor. (5 marks)
- (c) The Hopkinson's test on two similar d.c shunt machines at full load gave the following results:

Line voltage: 230 V

Line current excluding field currents: 15 A

Motor armature current: 75 A

Armature resistance of each machine is: 0.3Ω

Field currents: 1.5 A and 2 A

Determine the motor's efficiency.

(10 marks)

- 3. (a) With the aid of labelled construction and stator coil supply connection diagrams, describe the construction of a variable reluctance stepper motor. (10 marks)
 - (b) A 10 kW, 4 pole, 220 V, 50 Hz reluctance motor has a torque angle of 28° when operating under rated load conditions. Determine the:
 - (i) load torque;
 - (ii) torque angle if the voltage drops to 210 V.

(5 marks)

(c) With reference to electric traction, describe the d.c system of tract electrification.

(5 marks)

- 4. (a) Explain:
 - (i) 'cogging' in three-phase induction motors;
 - (ii) how changes in supply voltage and frequency affect the performance of an induction motor. (4 marks)
 - (b) A 415 V, 50 Hz, 4 pole, three-phase, star-connected induction motor has the following parameters referred to stator:

$$R_1 = 0.1\Omega$$
 $R'_2 = 0.15\Omega$

$$X_1 = 0.4\Omega \qquad X_2' = 0.45\Omega$$

The motor has stator core loss of 1120 W and rotational loss of 1500 W. It draws a no-load current (line) of 24 A at a power factor of 0.09 (lag). If the motor operates at a slip of 4%, determine the:

- (i) input line current and its power factor;
- (ii) electromagnetic torque in Nm;
- (iii) output power;
- (iv) efficiency.

(16 marks)

- 5. (a) With the aid of a labelled diagram, explain the operation of a vapour absorption refrigeration system. (12 marks)
 - (b) State three:
 - (i) conditions to be fulfilled before an incoming alternator is connected to an infinite bus bar .
 - (ii) advantages of stationary armature as applied to synchronous machines.

(6 marks)

(c) List two methods of starting a synchronous motor.

(2 marks)

SECTION B: POWER ELECTRONICS

Answer TWO questions from this section.

- 6. (a) Figure 1 shows a symbol of a semiconductor device:
 - (i) name the device;
 - (ii) draw its equivalent circuit;
 - (iii) with the aid of voltage-current (V/I) characteristic curve, describe the operation of the device. (10 marks)

Fig.1

- (b) (i) State two advantages of multi-phase rectifier circuits.
 - (ii) Show that the expression of output d.c voltage of an n pulse half-wave controlled rectifier with overlap is given by:

$$Vd_c = \frac{nV_{max}}{2\pi}\sin\frac{\pi}{n}\{\cos\alpha + \cos(\alpha + \gamma)\}.$$

Where:

 α = firing angle;

 γ = overlap angle.

(10 marks)

7. (a) State three applications of cycloconverters.

(3 marks)

- (b) Figure 2 shows an inverter circuit:
 - (i) identify the type of inverter;
 - (ii) describe the operation of the circuit.

(9 marks)

Fig. 2

- (c) A single phase 230 V, 50 Hz supply feeds a separately excited d.c motor through two single phase semi-converters. One for the field and one for the armature. The firing angle for the semi-converter for field is zero. The field resistance is 200 Ω and armature resistance is 0.3 Ω. The load torque is 50 NM at 900 r.p.m. The voltage constant is 0.8 V/A rad/sec and the torque constant is 0.8 N m/A². Assuming that armature and field current are continuous and constant, determine the:
 - (i) field current;
 - (ii) firing angle of converter in the armature circuit. (8 marks)
- 8. (a) With the aid of diagrams, derive the expression for depth of heat penetration in induction heating. (8 marks)

- (b) An insulating slab of area 80 cm² and 2 cm thick is heated from 20 °C to 50 °C by dielectric heating in 7 minutes. The supply frequency is 20 MHz and 10% of the heat input to the slab is wasted. Assuming a relative permittivity of 6.5, density of 0.55 g/cm³, specific heat capacity of 1.0465 J/g/°C at a power factor of 0.04, determine the:
 - (i) applied voltage;
 - (ii) current drawn from the supply.

(8 marks)

- (c) A series inverter circuit has an output frequency of 50 Hz. The time gap between turn OFF SCR and turn ON of the other SCR is 10 mS. Determine the:
 - (i) time period of oscillations;
 - (ii) resonance frequency.

(4 marks)

THIS IS THE LAST PRINTED PAGE.