2915/104 ORGANIC AND INORGANIC CHEMISTRY I

Oct./Nov. 2022 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL DIPLOMA IN ANALYTICAL CHEMISTRY MODULE I

ORGANIC AND INORGANIC CHEMISTRY I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination.

Answer booklet;

Non programmable scientific calculator.

This paper consists of TWO sections; A and B.

Answer ALL questions in section A and any THREE questions from section B.

Each question in section A carries 4 marks while each question in section B carries 20 marks. Maximum marks for each part of a question are indicated.

Candidates should answer the questions in English.

This paper consists of 8 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (40 marks) Answer ALL questions in this section.

- (a) Give the IUPAC names of the following hydrocarbons:
 - (i) CH₃ | CH

(1 mark)

(ii) CH₁CH = C(CH₂)CH₂CH₃.

(I mark)

- (b) Draw the structures of the following compounds.
 - 3-bromo-3-methylpentane.

(1 mark)

(ii) But-2-ene.

(1 mark)

Study the following flowchart and answer the questions that follow.

- (a) Identify compound:
 - (i) N;

(1 mark)

(ii) P.

(1 mark)

(b) Write an equation for the reaction between N and sodium hydroxide.

(I-mark)

(c) State one use of compound P.

(I mark)

- Complete the following equations and name the organic products formed:
 - (a) CH₂C(CH₃)₂Cl+H₂O →

(2 marks)

(b) CH₁CH = CHCH₁ + HCl

(2 marks)

4. The following scheme shows reactions starting with alkanol X

- (a) Write the formula of:
 - (i) alkanol X; (1 mark) (ii) compound z. (1 mark)
- (b) Name:
 - (i) process Y; (1 mark) (ii) compound z. (1 mark)
- A sample of ethanol was heated in the presence of concentrated sulphuric acid and a solution of potassium permanganate in distilled water. The mixture was allowed to cool before it was distilled.
 - (a) Name the main compound collected as a distillate. (I mark)
 - (b) State the colour of the solution mixture:
 - (i) before heating; (1 mark) (ii) after heating. (1 mark)
 - (c) Explain the observations in (b). (1 mark)
- (a) Write the full spdf electronic configuration of the following elements:
 - (i) potassium; (1 mark) (ii) lithium. (1 mark)
 - (b) Name the elements whose electronic configurations are:
 - (i) 1S² 2S² 2P⁶ 3S⁷ 3P⁶ 4S²; (1 mark)
 - (ii) 1S²2S³2P⁶3S². (1 mark)

 Table I gives information on elements A, B, C and D which are in the same group of the periodic table. Use the information to answer the questions that follow.

Table I

Element	First ionization energy (KJmol ⁻¹)	Atomic radium (nm)
A	520	0.15
В	500	0.19
C	420	0.23
D	400	0.25

- (a) Arrange the elements in order of reactivity starting with the most reactive. (2 marks)
- (b) State and explain the relationship between the variations in the first ionization energies and the atomic radii. (2 marks)
- Table 2 gives information about elements I, II, III and IV which belong to the same period of the periodic table.

Table 2

			~O` <u> </u>		
Element	I	II	III.	IV	
Atomic radii (nm)	0.117	0.186	0.099	0.143	
Electrical conductivity	Poor	Good	Poor	Good	

(a) Arrange the elements in the order they would appear in the period. Give a reason.

(2 marks)

(b) Select the element which is the better conductor of electricity. Give a reason.

(2 marks)

List any four diagonal relationships between lithium and magnesium.

(4 marks)

10. Name the elements associated with the following flame colours:

(a) red;

(1 mark)

(b) golden yellow;

(1 mark)

(c) orange;

(1 mark)

(d) green.

(1 mark)

SECTION B (60 marks)

Answer any THREE questions from this section.

H. (a) State the Markonikov's rule.

(2 marks)

(b) Outline a three step reaction mechanisms for acid catalysed hydration of ethene.

(8 marks)

- (c) When a hydrocarbon was completely burnt in oxygen, 4.2 g of carbon (IV) oxide and 1.71 g of water were formed. Determine the empirical formula of the hydrocarbon (C = 12, H = 1, O = 16). (10 marks)
- 12. (a) Draw the structure of the second member of the alkyne homologous series,

(I mark)

(b) Study the following chart and answer the questions that follow.

- (i) state the conditions and reagents necessary for the reaction in steps:
 - (I) I; (1 mark)

(II) II. (3 marks)

- (ii) Give the names of:
 - (1) products A and B; (2 marks)
 - (II) processes in steps II, III and IV. (3 marks)
- (iii) State the industrial application of the process in step II. (2 marks)

(c) Table III gives the formulae of four components W, X, Y and Z.

Table 3

Compound	Formula
W	C ₂ H ₆ O
X	C ₁ H ₆
Y	C ₃ H ₆ O ₂
Z	C ₁ H ₁

- (i) name the homologous series to which each compound belongs. (4 marks)
- (ii) giving a reason in each case, select the letter, which represents a compound that:
 - (I) decolourises bromine in the absence of U.V light; (2 marks)
 - (II) gives effervescence when reacted with aqueous sodium carbonate.

(2 marks)

 (a) Figure 1 shows a sketch diagram of a mass spectrometer. Use it to answer the questions that follow.

Fig. 1

(i) name the parts labelled a, b, c and d.

(4 marks)

(ii) explain the purpose of each of the parts named in a (i).

(8 marks)

(b) A mass spectrum for the isotopes of lead showed the following relative abundances:

2% 204 Pb; 25% 206 Pb; 21% 207 Pb; 51% 208 Pb.

Calculate the relative atomic mass of lead from this data.

(4 marks)

(c) List four general properties of ionic compounds.

(4 marks)

(a) The atomic numbers of elements X and Z are 12 and 14 respectively.

- (i) explain the differences between the melting points of their oxides; (4 marks)
- the oxides of elements X and Z were dissolved in water. State whether the resulting solutions were acidic or basic. (2 marks)
- (b) Table 4 gives information on some ions of group I and II elements.

Table 4

Ion	Electronic configuration	Ionic radius (nm)
Na ⁺	2.8	0.095
K ⁺	2.8.8	6 0.133
Mg ²⁺	2.8	0.065
Ca2+	2.8.8	0.099

Explain why the ionic radius of:

- (i) potassium is greater than that of sodium; (2 marks)
- (ii) magnesium is smaller than that of sodium. (2 marks)
- (c) Using dots (.) and cross (x) to represent outermost electrons, draw a diagram to show the bonding in the compound formed when calcium reacts with oxygen. (4 marks)
- (d) Explain why:
 - (i) liquid ammonia is a good solvent for alkali metals; (3 marks)
 - (ii) solutions of alkali metals in liquid ammonia are deep blue in colour.

 (3 marks)

- 15. (a) Give the IUPAC names of the following compounds:
 - (i) C2H3OC2H3 ;

(1 mark)

(ii) CH₂ CH₂ CH₃ C

(1 mark)

- (b) State the conditions and the reagents needed in each of the following reactions:
 - (i) 2C₂ H₂ OH --->C₂ H₂ O C₂H₃ + H₂O

OCH₃

(2 marks)

(ii) $C_2 H_5 OH \longrightarrow C_2 H_4 + H_2 O$

(2 marks)

- (c) State two uses of:
 - (i) diethyl ether;

(2 marks)

(ii) ethanol.

(2 marks)

(d) (i) Define the term radioactivity.

(1 mark)

- (ii) Arrange the three radioactive radiations in order of:
 - (I) penetrating strength starting with the most penetrating;
- (3 marks)
- (II) ionising strength starting with the most ionising.
- (3 marks)
- (e) The electronic arrangement of the ion of element Q is 2.8.8. If the formula of the ion is Q²⁺. State:
 - (i) group and the period to which Q belongs;

(2 marks)

(ii) electronic configuration of the atom of element Q.

(I mark)

THIS IS THE LAST PRINTED PAGE.