2705/205
BUILDING CONSTRUCTION II AND
DRAWING II
Oct./Nov. 2021
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN BUILDING TECHNOLOGY MODULE II

BUILDING CONSTRUCTION II AND DRAWING II

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Scientific calculator;

Drawing instruments;

Drawing paper size A3.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer FIVE questions choosing TWO questions from section A, TWO questions from section B and ONE question from either section.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

This paper consists of 8 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2021 The Kenya National Examinations Council

Turn over

SECTION A: BUILDING CONSTRUCTION II

Answer at least TWO questions from this section.

- 1. (a) State five advantages of hollow pot floor over solid concrete floor. (5 marks)
 - (b) **Figure 1** shows a tongue and grooved timber upper floor, sketch and label through section C-C. (5 marks)

Fig. 1: Tongue and Grooved Timber Floor

- (c) (i) Sketch and label a suspended slab and beam form work.
 - (ii) State five reasons for adopting pre-cast concrete in upper floors.

(10 marks)

- 2. (a) Explain the function of the following members of a roof:
 - (i) rafter;
 - (ii) purlin;
 - (iii) tie beam;
 - (iv) struts.

(8 marks)

(b) Differentiate between single and double roofs.

(4 marks)

- (c) (i) With the aid of a labelled sketch, explain a parabolic dome roof.
 - (ii) State **two** advantages of shell roofs as compared to traditional roof construction. (8 marks)

3. **Figure 2** shows a pitched roof, estimate the cost of the roof structure and its roofing materials using the information given based on the plan and section. (20 marks)

DATA

Tie beam - 100 x 75 mm

Rafters - 75 x 50 mm @ 1200 c/c

 Struts
 75 x 50 mm

 King post
 100 x 75 mm

 Purlins (4 no)
 50 x 50 mm

 G.C.I sheet
 Ksh. 500/m²

 Cost of timber
 25000/m³

Nails - Ordinary - 8 kg @ 150/kg

- Roofing - 5 kg @ 200/kg

Wall plate - 100 x 75 mm

Redge cap - Ksh. 500 / 2 m piece

Waste - 2.5%

4. (a) Explain three functional requirements of a roof covering.

(6 marks)

(b) Sketch and label a section through a makuti roof.

(5 marks)

- (c) (i) Outline the procedure of fixing a two row G.C.I sheet.
 - (ii) Sketch and label a cross-section of a typical two row G.C.I sheet roof.

(9 marks)

SECTION B: DRAWING I

Answer at least TWO questions from this section.

(a) State two types of construction specification.

(2 marks)

(b) State three reasons for air exchange systems in a building.

(3 marks)

(c) Figure 3 shows a flow plan of a domestic building. Draw a vertical section X-X to a scale of 1:20 up to and including the wall plate using the information given.

(15 marks)

DATA

Floor slab - 150 mm - 0

Foundation strip footing - 600 x 200 mm

Wall height - 2100

Foundation blinding - 50 mm_

Foundation wall depth - 900 mm

Hard core filling - 200 mm

Blinding - 50 mm

Door - 900 mm wide

Super structure wall - 150 mm thick -

Ring beam - 150 x 200 mm

Wall plate - 100 x 50 mm
Foundation wall thickness - 200 mm -

Floor finish - 20 mm

Fig. 3: Floor Plan of a Domestic Building

- (a) Differentiate between storage and industrial types of buildings giving **one** example in each. (5 marks)
- (b) Figure 4 shows a roof plan. To a scale of 1:10, draw section Y-Y using the information given. (15 marks)

DATA

6.

Roof pitch angle 30° Wall thickness 200 mm Wall plate 100 x 75 mm Rafter 100 x 75 mm Purlin 75 x 50 mm Struts 75 x 50 mm King post 100 x 50 mm Tie beam 100 x 75 mm

Fig. 4: Roof Plan

7. (a) State five roles of a structural engineer.

(5 marks)

(b) Figure 5 shows a plan of an R.C.C combined column base. To a scale of 1:25, draw section B-B. (15 marks)

DATA

Depth of column - 1500 mm

Depth of column base - 750 mm

Blinding - 50 mm

Transverse reinforcement - T10 @ 150 mm c/c

Covers - 25 mm f

- 25 mm for columns

- 50 mm for column bases

Make assumptions for other information.

(a) Redraw the detailed plan to a scale of 1:100.

(7 marks)

(13 marks)

(b) Draw the elevation from the direction of the arrow Z to a scale of 1:50.

DATA

External dimensions are as shown.

1500 x 1500 Windows 1500 x 2400 Doors - D1 - D2 900 x 2400 200 x 200 Ring beam Gable Type of roof 30° Roof pitch angle Wall thickness 200 mm Eave projection 500 mm Ceiling height 3000 mm

Slab thickness - 150 mm

Door opening - 1500 x 2400 with an arch

Make assumptions where applicable.

Fig. 6: Line Diagram of a Church Hall

THIS IS THE LAST PRINTED PAGE.