071906T4AEN
Agricultural Engineering level 6
ENG/0S/AGR/CC/01/6/A
Apply Engineering Mathematics
July /Aug 2023

TVET CURRICULUM DEVELOPMENT, ASSESSMENT AND CERTIFICATION COUNCIL (TVET CDACC)

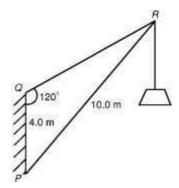
WRITTEN ASSESSMENT Time: 3 hours

INSTRUCTIONS TO CANDIDATE

- 1. This paper has **two** sections **A** and **B**.
- 2. You are provided with a separate answer booklet.
- 3. Marks for each question are as indicated.
- 4. Do not write on the question paper.

This paper consists of 4 printed pages

Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing


SECTION A: (40 Marks)

Answer all questions in this section

- 1. Use the quadratic formula to Solve $X^2 + 2X 8 = 0$ (4 marks)
- 2. Solve the equation $8sin^2\theta + 2\sin\theta 1 = 0$ for all values of $0^{\circ} \le \theta \ge 360^{\circ}$

(4 marks)

- 3. Prove that $\frac{1 + \cot \theta}{(1 + \tan \theta)} = \cot \theta$ (4 marks)
- 4. Determine the modulus and argument of the complex number Z = 3 + j4 and express Z in polar from (4 marks)
- 5. Given $Z_1=1-j3$, $Z_2=-2+j5$ and Z_3-3-j4 , Determine $\frac{z_1z_2}{z_1+z_3}$ in the form a+jb (4 marks)
- 6. The figure PQR represents the inclined jib of a crane. PR is 10.0m long, PQ is 4.0m long. Determine the inclination of the jib to the vertical and the length of tie QR

(4 marks)

- 7. Using quotient rule, find the derivative of the function $y = \frac{te^{2t}}{2\cos t}$ (4 marks)
- 8. Derive the equation for the curve which satisfies the differential equation

$$xy = (1 + x^2) \frac{dy}{dx}$$
 and passes through the point (0, 1). (4 marks)

- 9. What is the Laplace transform of $6\sin 3t 4\cos 5t$ (4 marks)
- 10. Determine the definite integrals of $\int_{1}^{4} 5t^{3} dt$ (4 marks)

SECTION B: (60 Marks)

Answer ANY THREE questions in this section

11. A d.c. circuit comprises three closed loops. Applying Kirchhoff's laws to the closed loops gives the following equations for current flow in milli-amperes:

$$2l_1 + 3l_2 - 4l_3 = 26$$
$$l_1 - 5l_2 - 3l_3 = 87$$
$$-7l_1 + 2l_2 + 6l_3 = 12$$

Use matrix method to solve for l_1 , l_2 and l_3

(20 marks)

12. (a) The following set of ungrouped data refers to the amount of money in £s taken by a news vendor for 6 days. {27.90, 34.70, 54.40, 18.92, 47.60, 39.68}.

Determine the

i. mean, (3 marks)

ii. median and (2 marks)

iii. modal values of the set (1 marks)

(b) The following data was recorded during an irrigation practical session conducted by an agricultural engineering trainee.

values recorded	Frequency
20.50-20.90	3
21.00-21.40	10
21.50-21.90	11
22.00-22.40	13
22.50-22.90	9
23.00-23.40	2

Determine:

(a) the mean; (3 marks)

(b) modal class; (1 Mark)

(c) Standard deviation in 2 d.p. (10 Marks)

- 13. (a) The equation $2X^3 7X^2 X + 12 = 0$ has a root near to x=1.5. use the Newton-Raphson method to find the root to 6 decimal places. (10 marks)
- (b) Given the following data, estimate $f_{2.5}$ using Newton –Gregory forward difference interpolation polynomial (10 marks)

X	F(x)
1	4
2	14
3	40
4	88
5	164
6	274

14. (a) Determine A \times B and angle θ between the two vectors if

$$A = 3i - 2j + 4k \text{ and } B = 2i \stackrel{\frown}{=} 3j - 2k$$
 (8 marks)

(b) Find the directional derivative of the function

$$\emptyset = x^2z + 2xy^2 + yz^2$$
At point (1, 2,-1) in the direction of the vector
$$A = 2i + 3j - 4k \tag{8 marks}$$

(c) if
$$A = 2i - 3j + k$$
; $B = i + 2j - k$; $C = 3i + j + 3k$; determine the Vector triple product $A \times (B \times C)$ (4 mark)